यदि $a +\alpha=1, b +\beta=2$ तथा $af ( x )+\alpha f \left(\frac{1}{ x }\right)$ $=b x +\frac{\beta}{ x }, x \neq 0$ हैं, तो $\frac{ f ( x )+ f \left(\frac{1}{ x }\right)}{ x +\frac{1}{ x }}$ बराबर है

  • [JEE MAIN 2021]
  • A

    $2$

  • B

    $1$

  • C

    $4$

  • D

    $5$

Similar Questions

माना $f:(1,3) \rightarrow R$ एक फलन है, जो $f( x )=\frac{ X [ X ]}{1+ x ^{2}}$, द्वारा परिभाषित है जहाँ $[ x ]$ महत्तम पूर्णाक $\leq x$ को दर्शाता है। तो $f$ का परिसर है 

  • [JEE MAIN 2020]

सभी $x, y \in N$ के लिए $f(x+y)=f(x) \cdot f(y)$ को संतुष्ट करता हुआ $f$ एक ऐसा फलन है कि $f(1)=3$ एवं $\sum_{x=1}^{n} f(x)=120$ तो $n$ का मान ज्ञात कीजिए।

माना $\mathrm{A}=\{1,2,3,4,5\}$ तथा $\mathrm{B}=\{1,2,3,4,5,6\}$ हैं। तो $f(1)+f(2)=f(4)-1$ को संतुष्ट करने वाले फलनों $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ की संख्या है

  • [JEE MAIN 2023]

माना द्विघात बहुपद $f ( x )$ इस प्रकार है कि $f (-2)+ f (3)=0$ है। यदि $f ( x )=0$ का एक मूल $-1$ है, तो $f ( x )=0$ के मूलों का योगफल है :

  • [JEE MAIN 2022]

सिद्ध कीजिए कि $f(x)=\frac{1}{x}$ द्वारा परिभाषित फलन $f: R_* , \rightarrow R_*$, एकैकी तथा आच्छादक है, जहाँ $R_*$, सभी ऋणेतर वास्तविक संख्याओं का समुच्चय है। यदि प्रांत $R_*$, को $N$ से बदल दिया जाए, जब कि सहप्रांत पूर्ववत $R_*$ही रहे, तो भी क्या यह परिणाम सत्य होगा?