જો બે વિધાનો $P$ અને $Q$ આપેલ હોય તો આપલે પૈકી ક્યૂ વિધાન સંપૂર્ણ સત્ય થાય ?
$(( P \Rightarrow Q ) \wedge \sim Q ) \Rightarrow Q$
$(( P \Rightarrow Q ) \wedge \sim Q ) \Rightarrow \sim P$
$(( P \Rightarrow Q ) \wedge \sim Q ) \Rightarrow P$
$(( P \Rightarrow Q ) \wedge \sim Q ) \Rightarrow( P \wedge Q )$
આપેલ વિધાન ધ્યાનથી જુઓ અને તેનું નિષેધ કરો.
" મેચ તોજ રમાશે જો વાતાવરણ સારું હશે અને મેદાન ભીનું નહીં હોય."
જો બુલિયન બહુપદી $( p \wedge q ) \circledast( p \otimes q )$ એ સંપૂર્ણ સત્ય છે તો $\circledast$ અને $\otimes$ એ . . . દર્શાવે છે .
જો $q$ એ મિથ્યા અને $p\, \wedge \,q\, \leftrightarrow \,r$ એ સાચું હોય તો નીચેનામાંથી ક્યું વિધાન નિત્ય સત્ય થાય ?
ધારો કે $( S 1)(p \Rightarrow q) \vee(p \wedge(\sim q))$ એ નિત્ય સત્ય છે
$(S2)$ $((\sim p) \Rightarrow(\sim q)) \wedge((\sim p) \vee q)$ એ નિત્ય મિથ્યા છે.
તો $..............$
ધારોકો $r \in\{p, q, \sim p, \sim q\}$ એવો છ કે જેથી તાર્કિક વિધાન $r \vee(\sim p) \Rightarrow(p \wedge q) \vee r$ : નિત્યસત્ય છે. તો $r=\dots\dots$