If $x^{2}+k x+6=(x+2)(x+3)$ for all $x,$ then the value of $k$ is
$5$
$1$
$-1$
$3$
Find $p(0), p(1), p(-2)$ for the following polynomials:
$p(x)=10 x-4 x^{2}-3$
Factorise :
$1+64 x^{3}$
Factorise
$x^{3}+8 x^{2}+9 x-18$
Write the degree of each of the following polynomials
$x^{3}-3\left(x^{2}\right)^{4}-15$
Find the zero of the polynomial in each of the following cases
$q(y)=\pi y+3.14$