If $\angle B$ and $\angle Q$ are acute angles such that $\sin B =\sin Q$, then prove that $\angle B =\angle Q$.
Let us consider two right triangles $ABC$ and $PQR$ where $\sin B=\sin Q$(see $Fig.$)
We have $\quad \sin B =\frac{A C}{A B}$
and $\sin Q =\frac{ PR }{ PQ }$
Then $\quad \frac{A C}{A B}=\frac{P R}{P Q}$
Therefore, $\frac{A C}{P R}=\frac{A B}{P Q}=k,$ say ...........$(1)$
Now, using Pythagoras theorem,
$BC =\sqrt{ AB ^{2}- AC ^{2}}$
and $QR =\sqrt{ PQ ^{2}- PR ^{2}}$
So, $\quad \frac{ BC }{ QR }=\frac{\sqrt{ AB ^{2}- AC ^{2}}}{\sqrt{ PQ ^{2}- PR ^{2}}}=\frac{\sqrt{k^{2} PQ ^{2}-k^{2} PR ^{2}}}{\sqrt{ PQ ^{2}- PR ^{2}}}=\frac{k \sqrt{ PQ ^{2}- PR ^{2}}}{\sqrt{ PQ ^{2}- PR ^{2}}}=k$ ..........$(2)$
From $( 1 )$ and $( 2 ),$ we have
$\frac{A C}{P R}=\frac{A B}{P Q}=\frac{B C}{Q R}$
Then,$\Delta ACB \sim \Delta PRQ$ and therefore, $\angle B =\angle Q$.
Evaluate the following:
$\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$
If $\sin 3 A =\cos \left( A -26^{\circ}\right),$ where $3 A$ is an acute angle, find the value of $A= . . . . ^{\circ}$.
$\sin 2 A=2 \sin A$ is true when $A=$
Evaluate:
$\frac{\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}}{\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}}$
In $\triangle PQR ,$ right $-$ angled at $Q , PR + QR =25\, cm$ and $PQ =5\, cm .$ Determine the values of $\sin P, \cos P$ and $\tan P$.