$X \cup Y$ માં $50$ ઘટકો, $X$ માં $28$ ઘટકો અને $Y$ માં $32$ ઘટકો હોય તેવા બે ગણો $X$ અને $Y$ આપેલા છે, તો $X$ $\cap$ $Y$ માં કેટલા ઘટક હશે ?
Given that
$n( X \cup Y )=50, n( X )=28, n( Y )=32$
$n( X \cap Y )=?$
By using the formula
$n( X \cup Y )=n( X )+n( Y )-n( X \cap Y ),$
we find that
$ n( X \cap Y ) =n( X )+n( Y )-n( X \cup Y ) $
$=28+32-50=10 $
Alternatively, suppose $n( X \cap Y )=k,$ then
$n( X - Y )=28-k, n( Y - X )=32-k$ (by Venn diagram in Fig )
This gives $50=n( X \cup Y )=n( X - Y )+n( X \cap Y )+n( Y - X )$
$=(28-k)+k+(32-k)$
Hence $k=10$
જો બે ગણ $X$ અને $Y$ માટે $X \cup Y$ માં $18$ ઘટકો, $X$ માં $8$ ઘટકો અને $Y$ માં $15$ ઘટકો હોય, તો $X \cap Y$ માં કેટલા ઘટકો હશે ?
જો ${N_a} = \{ an:n \in N\} ,$ તો ${N_3} \cap {N_4} = $
જો $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ અને $D=\{15,17\} ;$ હોય, તો શોધો : $A \cap \left( {B \cup D} \right)$
જો $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ અને $D=\{7,8,9,10\} $ હોય, તો શોધો : $A \cup B \cup D$
$A-(A-B)$ =