જો $U =\{1,2,3,4,5,6,7,8,9\}, A =\{2,4,6,8\}$ અને $B =\{2,3,5,7\}$ હોય, તો $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$ ચકાસો.
$U=\{1,2,3,4,5,6,7,8,9\}$
$A=\{2,4,6,8\}, B=\{2,3,5,7\}$
$(A \cap B)^{\prime}=\{2\}^{\prime}=\{1,3,4,5,6,7,8,9\}$
$A^{\prime} \cup B^{\prime}=\{1,3,5,7,9\} \cup\{1,4,6,8,9\}=\{1,3,4,5,6,7,8,9\}$
$\therefore(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
$U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ અને $C=\{3,4,5,6\}$ છે. નીચેના ગણ શોધો : $\left(A^{\prime}\right)^{\prime}$
જો $U = \{ 1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9,\,10\} $, $A = \{ 1,\,2,\,5\} ,\,B = \{ 6,\,7\} $, તો $A \cap B'$ મેળવો.
જો $U=\{a, b, c, d, e, f, g, h\}$ હોય, તો નીચેના ગણના પૂરક ગણ શોધો : $C=\{a, c, e, g\}$
નીચેનામાંથી ક્યું વિધાન ખોટું છે ?(જ્યાં $A$ $\&$ $B$ એ બે શૂન્ય ગણ નથી.)
$U=\{1,2,3,4,5,6,7,8,9,10\}$ અને $A=\{1,3,5,7,9\} .$ તો $A^{\prime}$ શોધો.