જો $A = \{ x:x$ એ પ્રાકૃતિક સંખ્યા છે $\} ,B = \{ x:x$ એ યુગ્મ પ્રાકૃતિક સંખ્યા છે $\} $ $C = \{ x:x$ એ અયુગ્મ પ્રાકૃતિક સંખ્યા છે $\} $ અને $D = \{ x:x$ એ અવિભાજ્ય સંખ્યા છે, $\} $ તો મેળવો : $A \cap D$
$A = \{ x:x$ is a natural number $\} = \{ 1,2,3,4,5 \ldots \} $
$B = \{ x:x$ is an even natural number $\} = \{ 2,4,6,8 \ldots \} $
$C = \{ x:x$ is an odd natural number $\} = \{ 1,3,5,7,9 \ldots \} $
$D = \{ x:x$ is a primenumber $\} = \{ 2,3,5,7 \ldots \}$
$A \cap D = \{ x:x$ is a prime number $\} = D$
ગણ $A = \{ 1,\,2,\,3\} ,\,B = \{ 3,4\} , C = \{4, 5, 6\}$, તો $A \cup (B \cap C)$ મેળવો.
જો બે ગણ $A$ અને $B$ આપેલ હોય તો $A \cap (B -A)$ મેળવો.
અહી $A =\{1,2,3,4,5,6,7\}$ અને $B =\{3,6,7,9\}$ આપેલ છે. તો ગણ $\{ C \subseteq A : C \cap B \neq \phi\}$ ની સભ્ય સંખ્યા મેળવો.
જો $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ અને $D=\{15,17\} ;$ હોય, તો શોધો : $A \cap \left( {B \cup C} \right)$
$X = \{ $ રામ, ગીતા, અકબર $\} $ અને $Y = \{ $ ગીતા, ડેવિડ, અશોક $\} $ ના ગણો $X$ અને $Y$ માટે $X \cap Y$ શોધો.