If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$A \cap D$
Find the union of each of the following pairs of sets :
$A=\{1,2,3\}, B=\varnothing$
If $X$ and $Y$ are two sets such that $n( X )=17, n( Y )=23$ and $n( X \cup Y )=38$
find $n( X \cap Y )$
If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find
$A \cap B$
If $n(A) = 3$, $n(B) = 6$ and $A \subseteq B$. Then the number of elements in $A \cup B$ is equal to