Show that for any sets $\mathrm{A}$ and $\mathrm{B}$, $A=(A \cap B) \cup(A-B)$ and $A \cup(B-A)=(A \cup B).$
To show: $A=(A \cap B) \cup(A-B)$
Let $x \in A$
We have to show that $x \in(A \cap B) \cup(A-B)$
Case $I$
$x \in A \cap B$
Then, $x \in(A \cap B) \subset(A \cup B) \cup(A-B)$
Case $II$
$x \notin A \cap B$
$\Rightarrow x \notin A$ or $x \notin B$
$\therefore x \notin B[x \notin A]$
$\therefore x \notin A-B \subset(A \cup B) \cup(A-B)$
$\therefore A \subset(A \cap B) \cup(A-B)$ ...........$(1)$
It is clear that
$A \cap B \subset A$ and $(A-B) \subset A$
$\therefore(A \cap B) \cup(A-B) \subset A$ ..........$(2)$
From $(1)$ and $(2),$ we obtain
$A=(A \cap B) \cup(A-B)$
To prove: $A \cup(B-A) \subset A \cup B$
Let $x \in A \cup(B-A)$
$\Rightarrow x \in A$ or $(x \in B$ and $x \notin A)$
$ \Rightarrow (x \in A$ or $x \in B)$ and $(x \in A$ or $x \notin A)$
$\Rightarrow x \in(A \cup B)$
$\therefore A \cup(B-A) \subset(A \cup B) $ .........$(3)$
Next, we show that $(A \cup B) \subset A \cup(B-A)$
Let $y \in A \cup B$
$\Rightarrow y \in A$ or $y \in B$
$ \Rightarrow (y \in A$ or $y \in B)$ and $(y \in A{\rm{ }}$ or $y \notin A)$
$\Rightarrow y \in A$ or $(y \in B$ and $y \notin A)$
$\Rightarrow y \in A \cup(B-A)$
$\therefore A \cup B \subset A \cup(B-A)$ ...........$(4$)
Hence, from $(3)$ and $(4)$, we obtain $A \cup(B-A)=A \cup B$.
Let $P=\{\theta: \sin \theta-\cos \theta=\sqrt{2} \cos \theta\}$ and $Q=\{\theta: \sin \theta+\cos \theta=\sqrt{2} \sin \theta\}$ be two sets. Then
If $X = \{ {4^n} - 3n - 1:n \in N\} $ and $Y = \{ 9(n - 1):n \in N\} ,$ then $X \cup Y$ = . . . . .
Find the union of each of the following pairs of sets :
$A=\{1,2,3\}, B=\varnothing$
If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find
$B-C$
Find the union of each of the following pairs of sets :
$A = \{ x:x$ is a natural number and multiple of $3\} $
$B = \{ x:x$ is a natural number less than $6\} $