જો $\mathrm{e}_{1}$ અને $\mathrm{e}_{2}$ એ અનુક્રમે ઉપવલય $\frac{\mathrm{x}^{2}}{18}+\frac{\mathrm{y}^{2}}{4}=1$ અને અતિવલય $\frac{\mathrm{x}^{2}}{9}-\frac{\mathrm{y}^{2}}{4}=1$ ની ઉકેન્દ્રીતા હોય અને બિંદુ $\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)$ એ ઉપવલય $15 \mathrm{x}^{2}+3 \mathrm{y}^{2}=\mathrm{k},$ પર હોય તો $\mathrm{k}$ મેળવો.
$15$
$14$
$17$
$16$
અતિવલય $\frac{{{x^2}}}{{{{\cos }^2}\alpha }}\,\, - \,\,\frac{{{y^2}}}{{{{\sin }^2}\,\,\alpha }}\, = \,\,1\,$ માટે જ્યારે $\,\alpha $ બદલાતો હોય ત્યારે નીચેના માંથી કયું પદ અચળ રહે.
ધારો કે $H : \frac{x^{2}}{ a ^{2}}-\frac{y^{2}}{ b ^{2}}=1, a >0, b >0$ એ એક એવો અતિવલય છે કે જેની મુખ્ય અક્ષ અને અનુબદ્ધ અક્ષની લંબાઈનો સરવાળો $4(2 \sqrt{2}+\sqrt{14})$ છે. જો $H$ ની ઉત્કેન્દ્રતા $\frac{\sqrt{11}}{2}$ હોય,તો $a ^{2}+ b ^{2}$ નું મૂલ્ય $\dots\dots\dots$છે.
જો પ્રમાણિત અતિવલયની ઉત્કેન્દ્ર્તા $2$ હોય જે બિંદુ $(4, 6)$ માંથી પસાર થતું હોય તો બિંદુ $(4, 6)$ આગળ અતિવલયનો સ્પર્શક મેળવો.
અતિવલય ${x^2}{\sec ^2}\theta - {y^2}cose{c^2}\theta = 1$ માટે $\theta $ ચલ હોય તો . . . . . ની કિંમત $\theta $ પર આધારિત નથી.
જેનાં નાભિઓ $(0,\,\pm 3)$ અને શિરોબિંદુઓ $(0,\,\pm \frac {\sqrt {11}}{2})$ હોય તેવા અતિવલયનું સમીકરણ મેળવો.