Shamshad Ali buys a scooter for $Rs$ $22000 .$ He pays $Rs$ $4000$ cash and agrees to pay the balance in annual instalment of $Rs$ $1000$ plus $10 \%$ interest on the unpaid amount. How much will the scooter cost him?
It is given that Shamshad Ali buys a scooter for $Rs.$ $22000$ and pays $Rs.$ $4000$ in cash.
$\therefore $ Unpaid amount $=$ $Rs.$ $22000-$ $Rs.$ $4000=$ $Rs.$ $18000$
According to the given condition, the interest paid annually is
$10 \%$ of $18000,10 \%$ of $17000,10 \%$ of $16000 \ldots \ldots 10 \%$ of $1000$
Thus, total interest to be paid
$=10 \%$ of $18000+10 \%$ of $17000+10 \%$ of $16000+\ldots \ldots+10 \%$ of $1000$
$=10 \%$ of $(18000+17000+16000+\ldots \ldots+1000)$
$=10 \%$ of $(1000+2000+3000+\ldots \ldots+18000)$
Here, $1000,2000,3000 \ldots .18000$ forms an $A.P.$ with first term and common difference both equal to $1000$
Let the number of terms be $n$
$\therefore 18000=1000+(n-1)(1000)$
$\Rightarrow n=18$
$\therefore 1000+2000+\ldots .+18000=\frac{18}{2}[2(1000)+(18-1)(1000)]$
$=9[2000+17000]$
$=171000$
Total interest paid $=10 \%$ of $(18000+17000+16000+\ldots .+1000)$
$=10 \%$ of $Rs .171000= Rs .17100$
$\therefore$ cost of scooter $= Rs .22000+ Rs .17100= Rs .39100$
If ${a^2},\;{b^2},\;{c^2}$ are in $A.P.$, then ${(b + c)^{ - 1}},\;{(c + a)^{ - 1}}$ and ${(a + b)^{ - 1}}$ will be in
The common difference of the $A.P.$ $b_{1}, b_{2}, \ldots,$ $b_{ m }$ is $2$ more than the common difference of $A.P.$ $a _{1}, a _{2}, \ldots, a _{ n } .$ If $a _{40}=-159, a _{100}=-399$ and $b _{100}= a _{70},$ then $b _{1}$ is equal to
The mean of the series $a,a + nd,\,\,a + 2nd$ is
Three numbers are in $A.P.$ whose sum is $33$ and product is $792$, then the smallest number from these numbers is
The sequence $\frac{5}{{\sqrt 7 }}$, $\frac{6}{{\sqrt 7 }}$, $\sqrt 7 $, ....... is