If $x \in [0, 1]$, then the number of solution $(s)$ of the equation $2[cos^{-1}x] + 6[sgn(sinx)] = 3$ is (where $[.]$ denotes greatest integer function and sgn $(x)$ denotes signum function of $x$)-
$1$
$0$
$2$
more than $2$
The value of $\sum \limits_{n=0}^{1947} \frac{1}{2^n+\sqrt{2^{1994}}}$ is equal to
Let $f : N \rightarrow R$ be a function such that $f(x+y)=2 f(x) f(y)$ for natural numbers $x$ and $y$. If $f(1)=2$, then the value of $\alpha$ for which
$\sum \limits_{k=1}^{10} f(\alpha+k)=\frac{512}{3}\left(2^{20}-1\right)$ holds, is
Let $f(x)$ be a non-constant polynomial with real coefficients such that $f\left(\frac{1}{2}\right)=100$ and $f(x) \leq 100$ for all real $x$. Which of the following statements is NOT necessarily true?
If a function $g(x)$ is defined in $[-1, 1]$ and two vertices of an equilateral triangle are $(0, 0)$ and $(x, g(x))$ and its area is $\frac{\sqrt 3}{4}$ , then $g(x)$ equals :-
Minimum integral value of $\alpha$ for which graph of $f(x) = ||x -2| -\alpha|-5$ has exactly four $x-$intercepts-