જો $A = \left[ {\begin{array}{*{20}{c}}
1&1\\
1&1
\end{array}} \right]$ અને $\det ({A^n} - I) = 1 - {\lambda ^n}\,,\,n \in N$ તો $\lambda $ મેળવો.
$1$
$2$
$3$
$4$
સમીકરણની સંહતિ $x + y + z = 6$, $x + 2y + 3z = 10,x + 2y + \lambda z = \mu $ નો એકપણ ઉકેલ શક્ય ન હોય તો . . .
જો રેખાઓ $x + 2ay + a = 0$, $x + 3by + b = 0$ અને $x + 4cy + c = 0$ એ સંગામી હોય તો $a$, $b$ અને $c$ એ . . . . શ્રેણીમાં હોય .
જો $\left| {\,\begin{array}{*{20}{c}}1&k&3\\3&k&{ - 2}\\2&3&{ - 1}\end{array}\,} \right| = 0$,તો $k$ ની કિમત મેળવો.
વિધાન $1$ : જો સમીકરણો $x + ky + 3z = 0, 3x+ ky - 2z = 0, 2x + 3y - 4z = 0$ ને શૂન્યતર ઉકેલ હોય તો $k$ ની કિમંત $\frac{31}{2}$ થાય .
વિધાન $2$ : ત્રણ સજાતીય સમીકરણોના સહગુણકોનો નિશ્રાયકનું મૂલ્ય શૂન્ય હોય તો સમીકરણોનો ઉકેલ શૂન્યતર ઉકેલ મળે.
સમીકરણની સંહતિ $(k + 1)x + 8y = 4k,$ $kx + (k + 3)y = 3k - 1$ ને અનંત ઉકેલ હોય, તો $k$ ની કિમત મેળવો.