Hydrogen $(H)$, deuterium $(D)$, singly ionized helium $(H{e^ + })$ and doubly ionized lithium $(Li)$ all have one electron around the nucleus. Consider $n =2$ to $n = 1 $ transition. The wavelengths of emitted radiations are ${\lambda _1},\;{\lambda _2},\;{\lambda _3}$ and ${\lambda _4}$ respectively. Then approximately
${\lambda _1} = {\lambda _2} = 4{\lambda _3} = 9{\lambda _4}$
$4{\lambda _1} = 2{\lambda _2} = 2{\lambda _3} = {\lambda _4}$
${\lambda _1} = 2{\lambda _2} = 2\sqrt 2 {\lambda _3} = 3\sqrt 2 {\lambda _4}$
${\lambda _1} = {\lambda _2} = 2{\lambda _3} = 3\sqrt 2 {\lambda _4}$
In the result of the Geiger-Marsden experiment, by which the trajectory of the $\alpha $ -particle can be calculated ?
$X$-rays incident on a material
If scattering particles are $56$ for ${90^o}$ angle then this will be at ${60^o}$ angle
The energy of hydrogen atom in $n^{th}$ orbit is $E_n$, then the energy in $n^{th}$ orbit of singly ionised helium atom will be
In Rutherford scattering experiment, what will be the correct angle for $\alpha $ scattering for an impact parameter $b = 0$.....$^o$