$\int {{e^{ax}}\left. {dx} \right|}  = {a^m}{e^{ax}} + C$ હોય, તો નીચેનામાંથી કયું વિધાન ખોટું પડે?

($x$ નું પારિમાણિક સૂત્ર $L^1$ છે)

  • A

    $m = -1$

  • B

    $C$ નું પારિમાણિક સૂત્ર $= L^1$

  • C

    $a$ નું પારિમાણિક સૂત્ર $ = L^{-1}$

  • D

    એક પણ નહીં

Similar Questions

નળીમાંથી એકમ આડછેદના ક્ષેત્રફળ અને એકમ સમયમાં પસાર થતાં પ્રવાહીનું દળ $P^x$ અને $v^y$ ના સમપ્રમાણમાં છે જ્યાં $P$ એ દબાણનો તફાવત અને $v$ વેગ છે, તો $x$ અને $y$ વચ્ચેનો સંબધ શું થાય?

ઉષ્મા અથવા ઊર્જાનો એકમ કૅલરી છે અને તે લગભગ $4.2 \,J$ બરાબર છે. જ્યાં $1 \;J =1\; kg \,m ^{2} \,s ^{-2}$, ધારો કે એકમોની એક નવી પ્રણાલિનો ઉપયોગ કરીએ કે જેમાં દળનો એકમ $\alpha\; kg$, લંબાઈનો એકમ $\beta\; m$ અને સમયનો એકમ $\gamma$ $s$ હોય, તો દર્શાવો કે નવા એકમોના સંદર્ભે કૅલરીનું માન $\;\alpha^{-1} \beta^{-2} \gamma^{2}$ છે.

ઊર્જા $U = \frac{{A\sqrt x }}{{{x^2} + B}},\,$ હોય,તો $AB$ નું પારિમાણીક સૂત્ર

જો પ્રકાશનો વેગ $c,$ સાર્વત્રિક ગુરુત્વાકર્ષી અચળાંક $G$ અને પ્લાન્ક અચળાંક $h$ ને મૂળભૂત રાશિઓ તરીકે સ્વીકારવામાં આવે, તો આ નવી પધ્ધતિમાં દળનું પરિમાણ શું થાય?

  • [JEE MAIN 2023]

એક વિદ્યાર્થી ભૌતિકવિજ્ઞાનમાં પ્રચલિત એવા કોઈ કણનાં ચલિતદળ $(moving\, mass)$ $m$ અને સ્થિર દળ $(rest \,mass)$ $m_{0}$ તથા કણનો વેગ $v$ અને પ્રકાશની ઝડપ $c$ વચ્ચેનો (આ સંબંધ પ્રથમ આલ્બર્ટ આઇન્સ્ટાઇનના વિશિષ્ટ સાપેક્ષતાના સિદ્ધાંતનાં પરિણામ સ્વરૂપે મળેલ હતો.) સંબંધને લગભગ સાચો યાદ રાખીને લખે છે. પરંતુ અચળાંક $c$ ને ક્યાં મૂકવો તે ભૂલી જાય છે. તે  $m=\frac{m_{0}}{\left(1-v^{2}\right)^{1 / 2}}$ લખે છે. અનુમાન કરો કે $c$ ને ક્યાં મૂકવો જોઈએ ?