If the coefficients of $x^{7}$ and $x^{8}$ in the expansion of $\left(2+\frac{x}{3}\right)^{n}$ are equal, then the value of $n$ is equal to $.....$
$44$
$55$
$48$
$61$
If the term independent of $x$ in the expansion of $\left(\sqrt{\mathrm{ax}}{ }^2+\frac{1}{2 \mathrm{x}^3}\right)^{10}$ is 105 , then $\mathrm{a}^2$ is equal to :
If $7^{th}$ term from beginning in the binomial expansion ${\left( {\frac{3}{{{{\left( {84} \right)}^{\frac{1}{3}}}}} + \sqrt 3 \ln \,x} \right)^9},\,x > 0$ is equal to $729$ , then possible value of $x$ is
If ${\left( {2 + \frac{x}{3}} \right)^{55}}$ is expanded in the ascending powers of $x$ and the coefficients of powers of $x$ in two consecutive terms of the expansion are equal, then these terms are
Find the coefficient of $x^{5}$ in the product $(1+2 x)^{6}(1-x)^{7}$ using binomial theorem.
The coefficient of the middle term in the binomial expansion in powers of $x$ of $(1 + \alpha x)^4$ and of $(1 - \alpha x)^6$ is the same if $\alpha$ equals