Given : $\vec A\, = \,2\hat i\, + \,p\hat j\, + q\hat k$ and $\vec B\, = \,5\hat i\, + \,7\hat j\, + 3\hat k,$ if $\vec A\,||\,\vec B,$ then the values of $p$ and $q$ are, respectively
A
$\frac {14}{5}$ and $\frac {6}{5}$
B
$\frac {14}{3}$ and $\frac {6}{5}$
C
$\frac {6}{5}$ and $\frac {1}{3}$
D
$\frac {3}{4}$ and $\frac {1}{4}$
Similar Questions
State with reasons, whether the following algebraic operations with scalar and vector physical quantities are meaningful :
$(a)$ adding any two scalars,
$(b)$ adding a scalar to a vector of the same dimensions ,
$(c)$ multiplying any vector by any scalar,
$(d)$ multiplying any two scalars,
$(e)$ adding any two vectors,
$(f)$ adding a component of a vector to the same vector.