Given : $\vec A\, = \,2\hat i\, + \,p\hat j\, + q\hat k$ and $\vec B\, = \,5\hat i\, + \,7\hat j\, + 3\hat k,$ if $\vec A\,||\,\vec B,$ then the values of $p$ and $q$ are, respectively

  • A
    $\frac {14}{5}$ and $\frac {6}{5}$
  • B
    $\frac {14}{3}$ and $\frac {6}{5}$
  • C
    $\frac {6}{5}$ and $\frac {1}{3}$
  • D
    $\frac {3}{4}$ and $\frac {1}{4}$

Similar Questions

State with reasons, whether the following algebraic operations with scalar and vector physical quantities are meaningful :
$(a)$ adding any two scalars,
$(b)$ adding a scalar to a vector of the same dimensions ,
$(c)$ multiplying any vector by any scalar,
$(d)$ multiplying any two scalars,
$(e)$ adding any two vectors,
$(f)$ adding a component of a vector to the same vector.

Obtain the scalar product of two mutually perpendicular vectors.

Unit vector perpendicular to vector $A =-3 \hat{ i }-2 \hat{ j }-3 \hat{ k }$ and $B =2 \hat{ i }+4 \hat{ j }+6 \hat{ k }$ both is

The angle between two vectors $4\hat i + 3\hat j + \hat k$ and $-3\hat i + 2\hat j + 6\hat k$ is ....... $^o$

Obtain scalar product in terms of Cartesian component of vectors.