Obtain scalar product in terms of Cartesian component of vectors.
$\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$ is written in Cartesian component as follow :
$\overrightarrow{\mathrm{A}}= \mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}+\mathrm{A}_{z} \hat{k}$
$\overrightarrow{\mathrm{B}}=\mathrm{B}_{x} \hat{i}+\mathrm{B}_{y} \hat{j}+\mathrm{B}_{z} \hat{k}$
$\therefore \quad \overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\left(\mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}+\mathrm{A}_{z} \hat{k}\right) \cdot\left(\mathrm{B}_{x} \hat{i}+\mathrm{B}_{y} \hat{j}+\mathrm{B}_{z} \hat{k}\right)$
$= \mathrm{A}_{x} \mathrm{~B}_{x}(\hat{i} \cdot \hat{i})+\mathrm{A}_{x} \mathrm{~B}_{y}(\hat{i} \cdot \hat{j})+\mathrm{A}_{z} \mathrm{~B}_{z}(\hat{i} \cdot \hat{k})$
$+\mathrm{A}_{y} \mathrm{~B}_{x}(\hat{j} \cdot \hat{i})+\mathrm{A}_{y} \mathrm{~B}_{y}(\hat{j} \cdot \hat{j})+\mathrm{A}_{y} \mathrm{~B}_{z}(\hat{j} \cdot \hat{k})$
$+\mathrm{A}_{z} \mathrm{~B}_{x}(\hat{k} \cdot \hat{i})+\mathrm{A}_{z} \mathrm{~B}_{y}(\hat{k} \cdot \hat{j})+\mathrm{A}_{z} \mathrm{~B}_{z}(\hat{k} \cdot \hat{k})$
In this equation $\hat{i} \cdot \hat{i}=\hat{j} \cdot \hat{j}=\hat{k} \cdot \hat{k}=1$ and $\hat{i} \cdot \hat{j}=\hat{j} \cdot \hat{i}=0, \hat{j} \cdot \hat{k}=\hat{k} \cdot \hat{j}=0$, and $\hat{k} \cdot \hat{i}=\hat{i} \cdot \hat{k}=0$
So, $\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\mathrm{A}_{x} \mathrm{~B}_{x}+\mathrm{A}_{y} \mathrm{~B}_{y}+\mathrm{A}_{z} \mathrm{~B}_{z}$
If for two vectors $\overrightarrow A $ and $\overrightarrow B ,\overrightarrow A \times \overrightarrow B = 0,$ the vectors
The resultant of the two vectors having magnitude $2$ and $3$ is $1$. What is their cross product
Consider a vector $\overrightarrow F = 4\hat i - 3\hat j.$ Another vector that is perpendicular to $\overrightarrow F $ is