Unit vector perpendicular to vector $A =-3 \hat{ i }-2 \hat{ j }-3 \hat{ k }$ and $B =2 \hat{ i }+4 \hat{ j }+6 \hat{ k }$ both is

  • A
    $\frac{3 \hat{ j }-2 \hat{ k }}{\sqrt{13}}$
  • B
    $\frac{3 \hat{ k }-2 \hat{ j }}{\sqrt{13}}$
  • C
    $\frac{-\hat{ j }+2 \hat{ k }}{\sqrt{13}}$
  • D
    $\frac{\hat{ i }+3 \hat{ j }-\hat{ k }}{\sqrt{13}}$

Similar Questions

The value of $\hat{ i } \times(\hat{ i } \times a )+\hat{ j } \times(\hat{ j } \times a )+\hat{ k } \times(\hat{ k } \times a )$ is

Vectors $a \hat{i}+b \hat{j}+\hat{k}$ and $2 \hat{i}-3 \hat{j}+4 \hat{k}$ are perpendicular to each other when $3 a+2 b=7$, the ratio of a to $b$ is $\frac{x}{2}$. The value of $x$ is $..............$

  • [JEE MAIN 2023]

What is the product of two vectors if they are parallel or antiparallel ? 

$\vec{A}$ is a vector quantity such that $|\vec{A}|=$ nonzero constant. Which of the following expressions is true for $\vec{A}$ $?$

  • [JEE MAIN 2022]

If a vector $2\hat i + 3\hat j + 8\hat k$ is perpendicular to the vector $4\hat j - 4\hat i + \alpha \hat k$. Then the value of $\alpha $ is

  • [AIPMT 2005]