Find the value of $\tan \frac{\pi}{8}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $x=\frac{\pi}{8} .$ Then $2 x=\frac{\pi}{4}$

Now $\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$

or $\tan \frac{\pi}{4}=\frac{2 \tan \frac{\pi}{8}}{1-\tan ^{2} \frac{\pi}{8}}$

Let $y=\tan \frac{\pi}{8} .$ Then $1=\frac{2 y}{1-y^{2}}$

or    $y^{2}+2 y-1=0$

Therefore     $y=\frac{-2 \pm 2 \sqrt{2}}{2}=-1 \pm \sqrt{2}$

since $\frac{\pi}{8}$ lies in the first quadrant, $y=\tan \frac{\pi}{8}$ is positve. Hence

$\tan \frac{\pi}{8}=\sqrt{2}-1$

Similar Questions

If the equation $2\ {\sin ^2}x + \frac{{\sin 2x}}{2} = k$ , has atleast one real solution, then the sum of all integral values of $k$ is

The number of solutions of the equation $4 \sin ^2 x-4$ $\cos ^3 \mathrm{x}+9-4 \cos \mathrm{x}=0 ; \mathrm{x} \in[-2 \pi, 2 \pi]$ is :

  • [JEE MAIN 2024]

The number of integral values of $k$, for which the equation $7\cos x + 5\sin x = 2k + 1$ has a solution, is

  • [IIT 2002]

If ${\tan ^2}\theta - (1 + \sqrt 3 )\tan \theta + \sqrt 3 = 0$, then the general value of $\theta $ is

If $0\, \le \,x\, < \frac{\pi }{2},$ then the number of values of $x$ for which $sin\,x -sin\,2x + sin\,3x=0,$ is

  • [JEE MAIN 2019]