Find the value of $\tan \frac{\pi}{8}$
Let $x=\frac{\pi}{8} .$ Then $2 x=\frac{\pi}{4}$
Now $\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$
or $\tan \frac{\pi}{4}=\frac{2 \tan \frac{\pi}{8}}{1-\tan ^{2} \frac{\pi}{8}}$
Let $y=\tan \frac{\pi}{8} .$ Then $1=\frac{2 y}{1-y^{2}}$
or $y^{2}+2 y-1=0$
Therefore $y=\frac{-2 \pm 2 \sqrt{2}}{2}=-1 \pm \sqrt{2}$
since $\frac{\pi}{8}$ lies in the first quadrant, $y=\tan \frac{\pi}{8}$ is positve. Hence
$\tan \frac{\pi}{8}=\sqrt{2}-1$
The number of solution of the equation $2\cos ({e^x}) = {5^x} + {5^{ - x}}$, are
Common roots of the equations $2{\sin ^2}x + {\sin ^2}2x = 2$ and $\sin 2x + \cos 2x = \tan x,$ are
The number of solutions of equation $3cos^2x - 8sinx = 0$ in $[0, 3\pi]$ is
The general value of $\theta $ that satisfies both the equations $cot^3\theta + 3 \sqrt 3 $ = $0$ & $cosec^5\theta + 32$ = $0$ is $(n \in I)$
If the equation $2\ {\sin ^2}x + \frac{{\sin 2x}}{2} = k$ , has atleast one real solution, then the sum of all integral values of $k$ is