From a class of $25$ students, $10$ are to be chosen for an excursion party. There are $3$ students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

From the class of $25$ students, $10$ are to be chosen for an excursion party.

since there are $3$ students who decide that either all of them will join or none fo them will join, there are two cases.

Case $I:$ All the three students join.

Then, the remaining $7$ students can be chosen from the remaining $22$ students in $^{22} C_{7}$ ways.

Case $II:$ None of the three students join.

Then, $10$ students can be chosen from the remaining $22$ students in $^{22} C_{10}$ ways.

Thus, required number of ways of choosing the excursion party is $^{22} C_{7}+^{22} C_{10}.$

Similar Questions

The set $S = \left\{ {1,2,3, \ldots ,12} \right\}$ is to be partitioned into three sets $A,\,B,\, C$ of equal size . Thus $A \cup B \cup C = S$ અને $A \cap B = B \cap C = C \cap A = \emptyset $ . The number of ways to partition $S$ is

  • [AIEEE 2007]

The number of triplets $(x, y, z)$. where $x, y, z$ are distinct non negative integers satisfying $x+y+z=15$, is

  • [JEE MAIN 2023]

The number of four letter words that can be formed using the letters of the word $BARRACK$ is

  • [JEE MAIN 2018]

In a city no two persons have identical set of teeth and there is no person without a tooth. Also no person has more than $32$ teeth. If we disregard the shape and size of tooth and consider only the positioning of the teeth, then the maximum population of the city is

If $n \geq 2$ is a positive integer, then the sum of the series ${ }^{ n +1} C _{2}+2\left({ }^{2} C _{2}+{ }^{3} C _{2}+{ }^{4} C _{2}+\ldots+{ }^{ n } C _{2}\right)$ is ...... .

  • [JEE MAIN 2021]