Four charges are arranged at the corners of a square $ABCD$, as shown in the adjoining figure. The force on the charge kept at the centre $O$ is
Zero
Along the diagonal $AC$
Along the diagonal $BD$
Perpendicular to side $AB$
How did Coulomb find the law of value of electric force between two point charges ?
Two positive ions, each carrying a charge $q,$ are separated by a distance $d.$ If $F$ is the force of repulsion between the ions, the number of electrons missing from each ion will be ($e$ being the charge on an electron)
A particle of mass $1 \,{mg}$ and charge $q$ is lying at the mid-point of two stationary particles kept at a distance $'2 \,{m}^{\prime}$ when each is carrying same charge $'q'.$ If the free charged particle is displaced from its equilibrium position through distance $'x'$ $(x\,< \,1\, {m})$. The particle executes $SHM.$ Its angular frequency of oscillation will be $....\,\times 10^{8}\, {rad} / {s}$ if ${q}^{2}=10\, {C}^{2}$
The unit of electric permittivity is
What is the force (in $N$) between two small charged spheres having charges of $2 \times 10^{-7} \;C$ and $3 \times 10^{-7} \;C$ placed $30\; cm$ apart in air?