दो बिन्दु आवेशों $Q$ व $ - Q$ जो $d$ दूरी पर हैं, के बीच लगने वाले आकर्षण बल का मान ${F_e}$ है। जब इन आवेशों को दो एकसमान गोलों पर जिसकी त्रिज्या $R = 0.3\,d$, एवं जिनके केन्द्र के बीच की दूरी $d$ मीटर है, रख दिया जाता है, तो उनके बीच कार्य करने वाले आकर्षण बल का मान है
${F_e}$ से अधिक
${F_e}$ के बराबर
${F_e}$ से कम
इनमे से कोई नहीं
कल्पना कीजिये कि एक प्रोटॉन और एक इलेक्ट्रान के आवेश में अल्प अन्तर होता है। इनमें से एक $- e$ है और दूसरा $( e +\Delta e )$ है। यदि एक दूसरे से $^{\prime} d ^{\prime}$ दूरी पर रखे हाइड्रोजन के दो परमाणुओं के बीच ( जहाँ $d$ परमाणु के साइज से बहुत अधिक है ) स्थिर वैधुत बल और गुरूत्वीय बल का परिणामी ( नेट) शून्य है तो, $\Delta e$ की कोटि होगी :
(दिया है, हाइड्रोजन का द्रव्यमान $m _{ h }=1.67 \times 10^{-27}$ $kg)$
$0.4 \mu C$ आवेश के किसी छोटे गोले पर किसी अन्य छोटे आवेशित गोले के कारण वायु में $0.2\, N$ बल लगता है। यदि दूसरे गोले पर $0.8\, \mu C$ आवेश हो तो $(a)$ दोनों गोलों के बीच कितनी दूरी है? $(b)$ दूसरे गोले पर पहले गोले के कारण कितना बल लगता है?
दो बिन्दु आवेश $ + \,9e$ तथा $ + \,e$ एक दूसरे से $16$ सेमी. दूर स्थित हैं। अन्य आवेश $q$ को इनके बीच कहाँ रखा जाये कि निकाय सन्तुलन अवस्था में हो
बिन्दु आवेश $ + 4q,\, - q$ एवं $ + 4q$ , $X - $अक्ष के बिन्दुओं $x = 0,\,x = a$ एवं $x = 2a$ पर रखे हैं, तो
चार आवेश $Q_1, Q_2, Q_3$, तथा $Q_4$, जिनका मान समान है, $x$ अक्ष के अनुदिश क्रमशः $x=-2 a,-a,+a$ तथा $+2 a$ पर रखे हैं। एक अन्य धनावेश $q,+y$ अक्ष पर $b > 0$ दूरी पर रखा है। आवेशों के चिहृन (sign) के चार विकल्प सूची-$I$ में दिए है। आवेश $q$ पर लगने वाले बलों की दिशा सूची-$II$ में दी गई है। सूची-$I$ को सूची-$II$ से सुमेलित कीजिए तथा सूचियों के नीचे दिये गए कोड का प्रयोग करके सही विकल्प चुनिए :
सूची-$I$ | सूची-$II$ |
$P.$ $\quad Q _1, Q _2, Q _3, Q _4$, सभी धनावेश है। | $1.\quad$ $+ x$ |
$Q.$ $\quad Q _1, Q _2$ धनावेश है $Q _3, Q _4$ ॠणावेश है। | $2.\quad$ $-x$ |
$R.$ $\quad Q _1, Q _4$ धनावेश है $Q _2, Q _3$ ॠणावेश है। | $3.\quad$ $+ y$ |
$S.$ $\quad Q _1, Q _3$ धनावेश है $Q _2, Q _4$ ॠणावेश है। | $4.\quad$ $-y$ |