The force-deformation equation for a nonlinear spring fixed at one end is $F =4x^{1/ 2}$ , where $F$ is the force (expressed in newtons) applied at the other end and $x$ is the deformation expressed in meters
This spring mass system execute $SHM$ .
The deformation $x_0$ if a $100\ g$ block is suspended from the spring and is at rest is $0.625\ m$ .
Assuming that the slope of the force deformation curve at the point corresponding to the deformation $x_0$ can be used as an equivalent spring constant, then the frequency of vibration of the block is $\frac{{4\sqrt 5 }}{{2\pi }}$ .
None of these
Which type of spring have fast oscillation ? Stiff or soft.
A $100 \,g$ mass stretches a particular spring by $9.8 \,cm$, when suspended vertically from it. ....... $g$ large a mass must be attached to the spring if the period of vibration is to be $6.28 \,s$.
The total spring constant of the system as shown in the figure will be
In the given figure, a body of mass $M$ is held between two massless springs, on a smooth inclined plane. The free ends of the springs are attached to firm supports. If each spring has spring constant $k,$ the frequency of oscillation of given body is :
A block $P$ of mass $m$ is placed on a smooth horizontal surface. A block $Q$ of same mass is placed over the block $P$ and the coefficient of static friction between them is ${\mu _S}$. A spring of spring constant $K$ is attached to block $Q$. The blocks are displaced together to a distance $A$ and released. The upper block oscillates without slipping over the lower block. The maximum frictional force between the block is