For what values of $x$, the numbers $\frac{2}{7}, x,-\frac{7}{2}$ are in $G.P.$?
The given numbers are $\frac{-2}{7}, x, \frac{-7}{2}$
Common ratio $=\frac{x}{-2 / 7}=\frac{-7 x}{2}$
Also, common ratio $=\frac{-7 / 2}{x}=\frac{-7}{2 x}$
$\therefore \frac{-7 x}{2}=\frac{-7}{2 x}$
$\Rightarrow x^{2}=\frac{-2 \times 7}{-2 \times 7}=1$
$\Rightarrow x=\sqrt{1}$
$\Rightarrow x=\pm 1$
Thus, for $x=\pm 1,$ the given numbers will be in $G.P.$
If $a$,$b$,$c \in {R^ + }$ are such that $2a$,$b$ and $4c$ are in $A$.$P$ and $c$,$a$ and $b$ are in $G$.$P$., then
Let $\alpha$ and $\beta$ be the roots of $x^{2}-3 x+p=0$ and $\gamma$ and $\delta$ be the roots of $x^{2}-6 x+q=0 .$ If $\alpha$ $\beta, \gamma, \delta$ form a geometric progression. Then ratio $(2 q+p):(2 q-p)$ is
If ${a^2} + a{b^2} + 16{c^2} = 2(3ab + 6bc + 4ac)$, where $a,b,c$ are non-zero numbers. Then $a,b,c$ are in
$0.14189189189….$ can be expressed as a rational number