For the reaction $A + 2B \to C,$ rate is given by $R$ $ = [A]{[B]^2}$ then the order of the reaction is

  • [AIEEE 2002]
  • A

    $3$

  • B

    $6$

  • C

    $5$

  • D

    $7$

Similar Questions

Consider the kinetic data given in the following table for the reaction $A + B + C \rightarrow$ Product.

Experiment No. $\begin{array}{c}{[ A ]} \\ \left( mol dm ^{-3}\right)\end{array}$ $\begin{array}{c}{[ B ]} \\ \left( mol dm ^{-3}\right)\end{array}$ $\begin{array}{c}{[ C]} \\ \left( mol dm ^{-3}\right)\end{array}$ Rate of reaction $\left( mol dm ^{-3} s ^{-1}\right)$
$1$ $0.2$ $0.1$ $0.1$ $6.0 \times 10^{-5}$
$2$ $0.2$ $0.2$ $0.1$ $6.0 \times 10^{-5}$
$3$ $0.2$ $0.1$ $0.2$ $1.2 \times 10^{-4}$
$4$ $0.3$ $0.1$ $0.1$ $9.0 \times 10^{-5}$

The rate of the reaction for $[ A ]=0.15 mol dm ^{-3},[ B ]=0.25 mol dm ^{-3}$ and $[ C ]=0.15 mol dm ^{-3}$ is found to be $Y \times 10^{-5} mol dm d ^{-3} s ^{-1}$. The value of $Y$ i. . . . . . .

  • [IIT 2019]

For the reaction between $A$ and $B$ , the initial rate of reaction $(r_0)$ was measured for different initial concentration of $A$ and $B$ as given below Order of the reaction with respect to $A$ and $B$ respectively, is $\sqrt 2  = 1.4 ,\,\sqrt 3  \times 10^{-4}$ 

$A/mol\,L^{-1}$ $0.2$ $0.2$ $0.4$
$B/mol\,L^{-1}$ $0.3$ $0.1$ $0.05$
$r_0/mol^{-1}s^{-1}$ $5.0\times 10^{-5}$ $5.0\times 10^{-5}$ $1.4\times 10^{-4}$

The half life period of a gaseous reactant undergoing thermal decomposition was measured for various initial pressures $'p_0'$ as follows :

 $\begin{array}{|l|l|l|} \hline P_0\,\,(mmHg) & 250 & 300 \\ \hline t_{1/2}\,\,(minutes) & 135 & 112.5 \\ \hline \end{array}$

The order of reaction is -

The reaction $2{N_2}{O_5}$ $\rightleftharpoons$ $2N{O_2} + {O_2}$ follows first order kinetics. Hence, the molecularity of the reaction is

In a gaseous reaction 

${A_{2\left( g \right)}} \longrightarrow {B_{\left( g \right)}} + \frac{1}{2}\,{C_{\left( g \right)}}$ the increase in pressure from $100\, mm$ to $120\, mm$ is noticed in $5\,\min$. The rate of dissappearence of $A_2$ in $mm\, min^{-1}$ is