For the reaction between $A$ and $B$ , the initial rate of reaction $(r_0)$ was measured for different initial concentration of $A$ and $B$ as given below Order of the reaction with respect to $A$ and $B$ respectively, is $\sqrt 2 = 1.4 ,\,\sqrt 3 \times 10^{-4}$
$A/mol\,L^{-1}$ | $0.2$ | $0.2$ | $0.4$ |
$B/mol\,L^{-1}$ | $0.3$ | $0.1$ | $0.05$ |
$r_0/mol^{-1}s^{-1}$ | $5.0\times 10^{-5}$ | $5.0\times 10^{-5}$ | $1.4\times 10^{-4}$ |
$\frac{1}{2},\,0$
$\frac{3}{2},\,\frac{1}{3}$
$\frac{3}{2},\,0$
$0,\,\frac{5}{2}$
The one which is unimolecular reaction is
What is the order of reaction' for $A + B \to C$
Observation | $[A]$ | $[B]$ | Rate of reaction |
$1$ | $0.1$ | $0.1$ | $2\times10^{-3}\, mol\, L^{-1}\,sec^{-1}$ |
$2$ | $0.2$ | $0.1$ | $0.4\times10^{-2}\, mol\, L^{-1}\,sec^{-1}$ |
$3$ | $0.1$ | $0.2$ | $1.4\times10^{-2}\, mol\, L^{-1}\,sec^{-1}$ |
The experimental data for reaction
$2A + B_2 \longrightarrow 2AB$
Exp. | $[A]$ | $[B_2]$ | Rate $(mol\,L^{-1}\,S^{-1})$ |
$1$ | $0.50$ | $0.50$ | $1.6 \times {10^{ - 4}}$ |
$2$ | $0.50$ | $1.00$ | $3.2 \times {10^{ - 4}}$ |
$3$ | $1.00$ | $1.00$ | $3.2 \times {10^{ - 4}}$ |
The rate law
For $n^{th}$ order reaction where $(n < 1)$
If the rate constant $(K)$ of a reaction is $1.6 \times 10^{-3}\, mol\, L^{-1}\, min^{-1}$ the order of reaction is