स्वतन्त्र घटनाओं ${A_1},\,{A_2},\,..........,{A_n},$ के लिए $P({A_i}) = \frac{1}{{i + 1}},$ $i = 1,\,\,2,\,......,\,\,n$ हो, तो किसी भी घटना के घटित न होने की प्रायिकता है
$\frac{n}{{n + 1}}$
$\frac{{n - 1}}{{n + 1}}$
$\frac{1}{{n + 1}}$
इनमें से कोई नहीं
दो पासे फेंके जाते हैं। घटनाएँ $A , B$ और $C$ निम्नलिखित प्रकार से हैं
$A$ : पहले पासे पर सम संख्या प्राप्त होना
$B$ : पहले पासे पर विषम संख्या प्राप्त होना
$C :$ पासों पर प्राप्त संख्याओं का योग $\leq 5$ होना
निम्नलिखित घटनाओं का वर्णन कीजिए
$A \cap B^{\prime} \cap C^{\prime}$
$2$ पांसों पर एक साथ द्विक ($Doublet$) आने की प्रायिकता है
यदि किसी घटना $A$ की प्रायिकता $\frac{2}{11}$ है तो घटना ' $A-$ नहीं की प्रायिकता ज्ञात कीजिए।
दो व्यक्ति एक पाँसे को फेंकते हैं, तो उनके बराबर अंक प्राप्त करने की प्रायिकता ${p_1}$ है। यदि चार व्यक्ति एक पाँसे को फेंकते हैं, उनमें तीन व्यक्तियों के बराबर अंक प्राप्त करने की प्रायिकता ${p_2}$ है, तो
दो पांसे साथ साथ फेंके जाते हैं। उनमें से एक पर $2$ का गुणज तथा दूसरे पर $3$ का गुणज आने की प्रायिकता है