For conversion of compound $A \rightarrow B$, the rate constant of the reaction was found to be $4.6 \times 10^{-5}\,L\, mol ^{-1}\, s ^{-1}$. The order of the reaction is $..........$
$4$
$6$
$2$
$8$
An elementary reaction between $A$ and $B$ is a second order reaction. Which of the following rate equations must be correct?
The reaction $2NO + Br_2 \rightarrow 2NOBr,$ follows the mechanism given below
$(I)$ $NO + Br_2 \rightleftharpoons NOBr_2 $ ........ Fast
$(II)$ $NOBr_2 + NO \rightarrow 2NOBr$ ......... Slow
The overall order of this reaction is
The rate constant of the reaction $2H_2O_2(aq) \to 2H_2O(aq) + O_2(g)$ is $3\times10^{-3}\, min^{-1}$. At what concentration of $H_2O_2$, the rate of reaction will be $2\times10^{-4}\, M\, s^{-1}$ ? ............ $M$
Consider the following single step reaction in gas phase at constant temperature.
$2 \mathrm{~A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \rightarrow \mathrm{C}_{(\mathrm{g})}$
The initial rate of the reaction is recorded as $r_1$ when the reaction starts with $1.5 \mathrm{~atm}$ pressure of $\mathrm{A}$ and $0.7 \mathrm{~atm}$ pressure of B. After some time, the rate $r_2$ is recorded when the pressure of $C$ becomes $0.5 \mathrm{~atm}$. The ratio $r_1: r_2$ is $\qquad$ $\times 10^{-1}$.
(Nearest integer)
For which type of reactions, order and molecularity have the same value ?