Write differential rate expression of following reaction and give its order of reaction :
$2 HI \rightarrow H _{2}+ I _{2}$
$2 NO _{( g )}+ O _{2( g )} \rightarrow 2 NO _{2( g )}$
The reaction $CH _{3} COF + H _{2} O \quad \rightleftharpoons CH _{3} COOH + HF$
Condition $I$ $:$ $\left[ H _{2} O \right]_{0}=1.00 \,M$
$\left[ CH _{3} COF \right]_{0}=0.01 \,M$
Condition $II$ $:$ $\left[ H _{2} O \right]_{0}=0.02 \,M$
$\left[ CH _{3} COF \right]_{0}=0.80 \,M$
Condition - $I$ | Condition - $II$ | ||
Time $min$ |
$\left[ CH _{3} COF \right]$ $M$ |
Time $min$ |
$\left[ H _{2} O \right] \,M$ |
$0$ | $0.01000$ | $0$ | $0.0200$ |
$10$ | $0.00867$ | $10$ | $0.0176$ |
$20$ | $0.00735$ | $20$ | $0.0156$ |
$40$ | $0.00540$ | $40$ | $0.0122$ |
Determine the order of reaction and calculate rate constant.
If $50\%$ of a reaction occurs in $100$ seconds and $75\%$ of the reaction occurs in $200$ seconds, the order of this reaction is
A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is
$(i)$ doubled
$(ii)$ reduced to half $?$
The following data is given for reaction between $A$ and $B$
$S.NO.$ | $[A]$ $mol.L^{-1}$ | $[B]$ $mol.L^{-1}$ | $Rate$ $mol.L^{-1}\,sec^{-1}$ |
$I$ | $1 \times 10^{-2}$ | $2 \times 10^{-2}$ | $2 \times 10^{-4}$ |
$II$ | $2 \times 10^{-2}$ | $2 \times 10^{-2}$ | $4 \times 10^{-4}$ |
$III$ | $2 \times 10^{-2}$ | $4 \times 10^{-2}$ | $8 \times 10^{-4}$ |
Which of the following are correct statements -
$(a)$ Rate constant of the reaction $10^{-4}$
$(b)$ Rate law of the reaction is $k[A][B]$
$(c)$ Rate of reaction increases four times on doubling the concentration of both the reactant