$A, B, C$ are any three events. If $P (S)$ denotes the probability of $S$ happening then $P\,(A \cap (B \cup C)) = $
$P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C)$
$P(A) + P(B) + P(C) - P(B)\,P(C)$
$P(A \cap B) + P(A \cap C) - P(A \cap B \cap C)$
None of these
A die is tossed thrice. Find the probability of getting an odd number at least once.
If $P\,(A) = \frac{1}{4},\,\,P\,(B) = \frac{5}{8}$ and $P\,(A \cup B) = \frac{3}{4},$ then $P\,(A \cap B) = $
Two aeroplanes $I$ and $II$ bomb a target in succession. The probabilities of $l$ and $II$ scoring a hit correctlyare $0.3$ and $0.2,$ respectively. The second plane will bomb only if the first misses the target. The probability that the target is hit by the second plane is
Fill in the blanks in following table :
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$0.35$ | ........... | $0.25$ | $0.6$ |
Given two independent events $A$ and $B$ such $P(A)=0.3,\, P(B)=0.6 .$ Find $P(A $ and not $B)$