For any two events $A$ and $B$ in a sample space
$P\,\left( {\frac{A}{B}} \right) \ge \frac{{P(A) + P(B) - 1}}{{P(B)}},\,\,P(B) \ne 0$ is always true
$P\,(A \cap \bar B) = P(A) - P(A \cap B)$ does not hold
$P\,(A \cup B) = 1 - P(\bar A)\,P(\bar B),$ if $A$ and $B$ are disjoint
None of these
If $A$ and $B$ an two events such that $P\,(A \cup B) = \frac{5}{6}$,$P\,(A \cap B) = \frac{1}{3}$ and $P\,(\bar B) = \frac{1}{3},$ then $P\,(A) = $
One card is drawn at random from a well shuffled deck of $52$ cards. In which of the following cases are the events $E$ and $F$ independent ?
$\mathrm{E}:$ ' the card drawn is black '
$\mathrm{F}:$ ' the card drawn is a king '
Let $A$ and $B$ be two events such that $P\,(A) = 0.3$ and $P\,(A \cup B) = 0.8$. If $A$ and $B$ are independent events, then $P(B) = $
If from each of the three boxes containing $3$ white and $1$ black, $2$ white and $2$ black, $1$ white and $3$ black balls, one ball is drawn at random, then the probability that $2$ white and $1$ black ball will be drawn is
In a hostel, $60 \%$ of the students read Hindi newspaper, $40 \%$ read English newspaper and $20 \%$ read both Hindi and English newspapers. A student is selected at random Find the probability that she reads neither Hindi nor English newspapers.