For a chemical reaction $A \rightarrow B$, it was found that concentration of $B$ is increased by $0.2\, mol\,L^{-1}$ in $30\, \mathrm{~min}$. The average rate of the reaction is $......\times 10^{-1} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~h}^{-1}$. (Nearest integer)
$1$
$2$
$3$
$4$
Which one of the following statements is wrong
The reaction $CH _{3} COF + H _{2} O \quad \rightleftharpoons CH _{3} COOH + HF$
Condition $I$ $:$ $\left[ H _{2} O \right]_{0}=1.00 \,M$
$\left[ CH _{3} COF \right]_{0}=0.01 \,M$
Condition $II$ $:$ $\left[ H _{2} O \right]_{0}=0.02 \,M$
$\left[ CH _{3} COF \right]_{0}=0.80 \,M$
Condition - $I$ | Condition - $II$ | ||
Time $min$ |
$\left[ CH _{3} COF \right]$ $M$ |
Time $min$ |
$\left[ H _{2} O \right] \,M$ |
$0$ | $0.01000$ | $0$ | $0.0200$ |
$10$ | $0.00867$ | $10$ | $0.0176$ |
$20$ | $0.00735$ | $20$ | $0.0156$ |
$40$ | $0.00540$ | $40$ | $0.0122$ |
Determine the order of reaction and calculate rate constant.
Assertion : The kinetics of the reaction -
$mA + nB + pC \to m' X + n 'Y + p 'Z$
obey the rate expression as $\frac{{dX}}{{dt}} = k{[A]^m}{[B]^n}$.
Reason : The rate of the reaction does not depend upon the concentration of $C$.
Write unit of rate constant of following reaction :
$1.$ $\frac {5}{2}$ order
$2.$ $n$ order
In the following reaction $A \to B + C$, rate constant is $0.001\, M/sec$. If we start with $1M$ of $A$, the conc. of $A$ & $B$ after $10$ min are respectively