colum $I$ | colum $II$ |
$(A)$ $A \cdot B =| A \times B |$ | $(p)$ $\theta=90^{\circ}$ |
$(B)$ $A \cdot B = B ^2$ | $(q)$ $\theta=0^{\circ}$ or $180^{\circ}$ |
$(C)$ $|A+B|=|A-B|$ | $(r)$ $A=B$ |
$(D)$ $|A \times B|=A B$ | $(s)$ None |
Why the product of two vectors is not commutative ?
If for two vector $\overrightarrow A $ and $\overrightarrow B $, sum $(\overrightarrow A + \overrightarrow B )$ is perpendicular to the difference $(\overrightarrow A - \overrightarrow B )$. The ratio of their magnitude is
The angle between two vectors $ - 2\hat i + 3\hat j + \hat k$ and $\hat i + 2\hat j - 4\hat k$ is ....... $^o$
The component of vector $A = 2\hat i + 3\hat j$ along the vector $\hat i + \hat j$is
If $\overrightarrow A \times \overrightarrow B = \overrightarrow C + \overrightarrow D,$ then select the correct alternative-