If $\theta$ is the angle between two vectors $A$ and $B$, then match the following two columns.
colum $I$ colum $II$
$(A)$ $A \cdot B =| A \times B |$ $(p)$ $\theta=90^{\circ}$
$(B)$ $A \cdot B = B ^2$ $(q)$ $\theta=0^{\circ}$ or $180^{\circ}$
$(C)$ $|A+B|=|A-B|$ $(r)$ $A=B$
$(D)$ $|A \times B|=A B$ $(s)$ None

  • A
    $( A \rightarrow s , B \rightarrow q , r , C \rightarrow p , D \rightarrow p )$
  • B
    $( A \rightarrow r , B \rightarrow q , s , C \rightarrow p , D \rightarrow p )$
  • C
    $( A \rightarrow p , B \rightarrow q , r , C \rightarrow p , D \rightarrow s )$
  • D
    $( A \rightarrow q , B \rightarrow s , r , C \rightarrow p , D \rightarrow p )$

Similar Questions

Why the product of two vectors is not commutative ?

If for two vector $\overrightarrow A $ and $\overrightarrow B $, sum $(\overrightarrow A + \overrightarrow B )$ is perpendicular to the difference $(\overrightarrow A - \overrightarrow B )$. The ratio of their magnitude is

The angle between two vectors $ - 2\hat i + 3\hat j + \hat k$ and $\hat i + 2\hat j - 4\hat k$ is ....... $^o$

The component of vector $A = 2\hat i + 3\hat j$ along the vector $\hat i + \hat j$is

If $\overrightarrow A  \times \overrightarrow B = \overrightarrow C + \overrightarrow D,$ then select the correct alternative-