$1$ से $2001$ तक के विषम पूर्णांकों का योग ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The odd integers from $1$ to $2001$ are $1,3,5 \ldots \ldots .1999,2001$

This sequence forms an $A.P.$

Here, first term, $a=1$

Common difference, $d=2$

Here, $a+(n-1) d=2001$

$\Rightarrow 1+(n-1)(2)=2001$

$\Rightarrow 2 n-2=2000$

$\Rightarrow n=1001$

$S_{n}=\frac{n}{2}[2 a+(n-1) d]$

$\therefore S_{n}=\frac{1001}{2}[2 \times 1+(1001-1) \times 2]$

$=\frac{1001}{2}[2+1000 \times 2]$

$=1001 \times 1001$

$=1002001$

Thus, the sum of odd numbers from $1$ to $2001$ is $1002001 .$

Similar Questions

यदि संख्याएँ $a,\;b,\;c,\;d,\;e$ एक समान्तर श्रेणी बनाती हैं, तब $a - 4b + 6c - 4d + e$ का मान है

माना कि एक समान्तर श्रेणी (arithmetic progression ($A.P.$)) के सभी पद धन पूर्णांक हैं । इस समान्तर श्रेणी में यदि पहले सात ($7$) पदों के योग और पहले ग्यारह ($11$) पदों के योग का अनुपात $6: 11$ है तथा सातवाँ पद $130$ और $140$ के बीच मं स्थित है, तब इस समान्तर श्रेणी के सार्व अन्तर (common difference) का मान है

  • [IIT 2015]

माना $a_{1}, a_{2}, a_{3}, \ldots ., a_{49}$ एक समांतर श्रेढ़ी में ऐसे है कि $\sum_{k=0}^{12} a_{4 k+1}=416$ तथा $a_{9}+a_{43}=66$ है। यदि $a_{1}^{2}+a_{2}^{2}+\ldots . .+a_{17}^{2}=140\, m$ है, तो $m$ बराबर है

  • [JEE MAIN 2018]

यदि $a,b,c$  समान्तर श्रेणी में हों तो $\frac{1}{{\sqrt a  + \sqrt b }},\,\frac{1}{{\sqrt a  + \sqrt c }},$ $\frac{1}{{\sqrt b  + \sqrt c }}$ होंगे    

यदि $x,y,z$ समान्तर श्रेणी में हों तथा ${\tan ^{ - 1}}x,{\tan ^{ - 1}}y$, ${\tan ^{ - 1}}z$ भी समान्तर श्रेणी में हों, तब