चित्र में दर्शाये अनुसार तीन सदिशों $\overrightarrow {OA} ,\,\overrightarrow {OB} $ व $\overrightarrow {OC} $ का परिणामी होगा। (वृत्त की त्रिज्या $R$ है)
$2R$
$R(1 + \sqrt 2 )$
$R\sqrt 2 $
$R(\sqrt 2 - 1)$
सदिश $\overrightarrow{ A }$ और $\overrightarrow{ B } .$ इस प्रकार हैं कि $|\overrightarrow{ A }+\overrightarrow{ B }|=|\overrightarrow{ A }-\overrightarrow{ B }|$ इन दो सदिशों के बीच का कोण है
दो सदिशों $\hat i - 2\hat j + 2\hat k$ तथा $2\hat i + \hat j - \hat k,$ में कौनसा सदिश जोडे़ं कि उनका परिणामी $X-$अक्ष के अनुदिश इकाई सदिश हो
विभिन्न तलों में कितने न्यूनतम अशून्य सदिशों का योग शून्य परिणामी देगा
$\mathrm{A}$ व $\frac{\mathrm{A}}{2}$ परिणाम के दो बल एक-दूसरे के लम्बवत हैं। उनके परिणामी का परिमाण है:
दो सदिशों $\overrightarrow{ A }$ तथा $\overrightarrow{ B }$ के परिमाण समान है। $(\overrightarrow{ A }+\overrightarrow{ B })$ का परिमाण $(\overrightarrow{ A }-\overrightarrow{ B })$ के परिमाण का $n$ गुना है। $\overrightarrow{ A }$ तथा $\overrightarrow{ B }$ के मध्य कोण है।