Find the remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by $x-\frac{1}{2}$
$-\frac{27}{8}$
$\frac{27}{8}$
$7$
$8$
Factorise $4 x^{2}+y^{2}+z^{2}-4 x y-2 y z+4 x z$.
Find the value of each of the following polynomials at the indicated value of variables : $p(t)=4 t^{4}+5 t^{3}-t^{2}+6$ at $t=a$.
Find $p(0)$, $p(1)$ and $p(2)$ for of the following polynomials : $p(x)=(x-1)(x+1)$
Find the value of $k,$ if $x-1$ is a factor of $4 x^{3}+3 x^{2}-4 x+k$.
Evaluate the following using suitable identities : $(102)^{3}$