Find the following products:
$\left(x^{2}-1\right)\left(x^{4}+x^{2}+1\right)$
$\left(x^{2}-1\right)\left(x^{4}+x^{2}+1\right)=\left(x^{2}-1\right)\left\{\left(x^{2}\right)^{2}+\left(x^{2}\right)(1)+(1)^{2}\right\}$
$=\left(x^{2}\right)^{3}-(1)^{3}$ $\quad\left[\because(a-b)\left(a^{2}+a b+b\right)^{2}=a^{3}-b^{3}\right]$
$=x^{6}-1$
Classify the following as linear, quadratic or cubic polynomial
$x^{2}-9 x+14$
By remainder Theorem find the remainder, when $p(x)$ is divided by $g(x),$ where
$p(x)=4 x^{3}-12 x^{2}+14 x-3, g(x)=2 x-1$
Write the degree of the following polynomials
$\sqrt{11} t+14$
If $a, b, c$ are all non-zero and $a+b+c=0,$ prove that $\frac{a^{2}}{b c}+\frac{b^{2}}{c a}+\frac{c^{2}}{a b}=3$
If $x+1$ is a factor of the polynomial $2 x^{2}+k x,$ then the value of $k$ is