Find the equation for the ellipse that satisfies the given conditions: Length of major axis $26$ foci $(±5,\,0)$
Length of major axis $=26 ;$ foci $=(\pm 5,\,0)$
since the foci are on the $x-$ axis, the major axis is along the $x-$ axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ where a is the semimajor axis.
Accordingly, $2 a=26 \Rightarrow a=13$ and $c=5$
It is known that $a^{2}=b^{2}+c^{2}$
$\therefore 13^{2}=b^{2}+5^{2}$
$\Rightarrow 169=b^{2}+25$
$\Rightarrow b^{2}=169-25$
$\Rightarrow b=\sqrt{144}=12$
Thus, the equation of the ellipse is $\frac{x^{2}}{13^{2}}+\frac{y^{2}}{12^{2}}=1$ or $\frac{x^{2}}{169}+\frac{y^{2}}{144}=1$
Product of slopes of common tangents to the ellipse $\frac{x^2}{32} + \frac{y^2}{8} = 1$ and parabola $y^2 = 8x$ is -
Let $A = \left\{ {\left( {x,y} \right):\,y = mx + 1} \right\}$
$B = \left\{ {\left( {x,y} \right):\,\,{x^2} + 4{y^2} = 1} \right\}$
$C = \left\{ {\left( {\alpha ,\beta } \right):\,\left( {\alpha ,\beta } \right) \in A\,\,and\,\,\left( {\alpha ,\beta } \right) \in B\,\,and\,\alpha \, > 0} \right\}$ .
If set $C$ is singleton set then sum of all possible values of $m$ is
A common tangent to $9x^2 + 16y^2 = 144 ; y^2 - x + 4 = 0 \,\,\&\,\, x^2 + y^2 - 12x + 32 = 0$ is :
The foci of the ellipse $25{(x + 1)^2} + 9{(y + 2)^2} = 225$ are at
If lines $3x + 2y = 10$ and $-3x + 2y = 10$ are tangents at the extremities of latus rectum of an ellipse whose centre is origin, then the length of latus rectum of ellipse is