Factorise the following:
$9 x^{2}-12 x+3$
$9 x^{2}-12 x+3=9 x^{2}-9 x-3 x+3$
$=9 x(x-1)-3(x-1)$
$=(9 x-3)(x-1)$
$=3(3 x-1)(x-1)$
Without finding the cubes, factorise
$(x-2 y)^{3}+(2 y-3 z)^{3}+(3 z-x)^{3}$
Expand
$(2 x+5 y)^{2}$
$(5 x+3)(5 x-3)=\ldots \ldots . .$
Evaluate $66 \times 74$ without directly multiplying
Is $x+1$ is a factor of $4 x^{3}+7 x^{2}-2 x-5$ or not ?