Factorise of the following : $27 y^{3}+125 z^{3}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Using the identity $\left(x^{3}+y^{3}\right)=(x+y)\left(x^{2}-x y+y^{2}\right),$ we have

$27 y^{3}+125 z^{3} =(3 y)^{3}+(5 z)^{3}=(3 y+5 z)\left[(3 y)^{2}-(3 y)(5 z)+(5 z)^{2}\right]$

$=(3 y+5 z)\left(9 y^{2}-15 y z+25 z^{2}\right)$

Similar Questions

Without actually calculating the cubes, find the value of each of the following : $(-12)^{3}+(7)^{3}+(5)^{3}$

Evaluate $105 \times 106$ without multiplying directly.

Factorise $x^{3}-23 x^{2}+142 x-120$

Verify whether the following are zeroes of the polynomial, indicated against them.

$p(x)=3 x+1, \,\,x=-\,\frac{1}{3}$

Find the remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by $5+2 x$.