Factorise :

$a^{3}-2 \sqrt{2} b^{3}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$a^{3}-2 \sqrt{2 b^{3}}=(a)^{3}-(\sqrt{2} b)^{3}$

$=(a-\sqrt{2} b)\left\{(a)^{2}+(a)(\sqrt{2} b)+(\sqrt{2} b)^{2}\right\}$ $\left[\because a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)\right]$

$=(a-\sqrt{2} b)\left(a^{2}+\sqrt{2} a b+2 b^{2}\right)$

Similar Questions

If $x=2 y+6,$ then what is the value of $x^{3}-8 y^{3}-36 x y-216 ?$

If $x+1$ is a factor of the polynomial $2 x^{2}+k x,$ then the value of $k$ is

Determine the degree of each of the following polynomials:

$x^{3}-9 x+3 x^{5}$

Classify the following as linear, quadratic or cubic polynomial

$35 x^{2}-16 x-12$

Without actually calculating the cubes, find the value of each of the following

$(21)^{3}+(15)^{3}+(-36)^{3}$