Factorise : $2 y^{3}+y^{2}-2 y-1$
$2 y^{3}+y^{2}-2 y-1$
We have $p ( y )=2 y ^{3}+ y ^{2}-2 y -1$
By trial, we have $p(1) =2(1)^{3}+(1)^{2}-2(1)-1=2(1)+1-2-1 $
$=2+1-2-1=0 $
$\therefore$ By factor theorem, $( y -1)$ is a factor of $p ( y )$.
$\therefore \quad \frac{\left(2 y^{3}+y^{2}-2 y-1\right)}{(y-1)}=2 y^{2}+3 y+1$
$=(y-1)\left[2 y^{2}+2 y+y+1\right]$
[Splitting the middle term]
$=( y -1)[2 y ( y +1)+1( y +1)]$
$=( y -1)[( y +1)(2 y +1)]$
$=(y-1)(y+1)(2 y+1)$
Find $p(0)$, $p(1)$ and $p(2)$ for of the following polynomials : $p(x)=(x-1)(x+1)$
Factorise : $27 x^{3}+y^{3}+z^{3}-9 x y z$
Find the value of the polynomial $5x -4x^2+ 3$ at $x = 0$.
Find the zero of the polynomial : $p(x) = x + 5$
Find the value of each of the following polynomials at the indicated value of variables : $q(y)=3 y^{3}-4 y+\sqrt{11}$ at $y=2$