Express the following in the form $\frac{p}{q},$ where $p$ and $q$ are integers and $q \neq 0 .$
$0 . \overline{35}$
$0 . \overline{35}$
Let, $x=0 . \overline{35}$
$\therefore x=0.3535 \ldots$ $....(1)$
Now, multiplying both the sides by $100 .$
$100 x=35.35 \ldots$ $\ldots \ldots(2)$
Subtract $(1)$ from $(2)$
$100 x=35.35 \ldots$
$\frac{-x=00.35\cdots}{99 x=35}$
$\therefore x=\frac{35}{99}$
Thus, $0 . \overline{35}=\frac{35}{99}$
Find the value
$(625)^{-\frac{3}{4}}$
Express the following in the form $\frac{p}{q},$ where $p$ and $q$ are integers and $q \neq 0$ :
$5. \overline{2}$
A rational number between $\sqrt{2}$ and $\sqrt{3}$ is
Rationalise the denominator in each of the following and hence evaluate by taking $\sqrt{2}=1.414, \sqrt{3}=1.732$ and $\sqrt{5}=2.236,$ upto three places of decimal.
$\frac{\sqrt{2}}{2+\sqrt{2}}$
Find five rational numbers between $-\frac{3}{4}$ and $-\frac{1}{3}$