Explain the superposition principle for static electric forces and write its general equation.
To find force acting on a charge by other charges, principle of superposition is also used with Coulomb's law.
"When more than one Coulombian forces are acting on a charge, the resultant coulombian force acting on it is equal to the vector sum of the individual forces."
Suppose $q_{1}, q_{2}$ and $q_{3}$ are charges of a system as shown in figure.
Let $\overrightarrow{r_{1}}, \overrightarrow{r_{2}}$ and $\overrightarrow{r_{3}}$ are their respective position vectors from origin ' $\mathrm{O}$ '.
If $\overrightarrow{\mathrm{F}_{12}}$ is force acting on $q_{1}$ by $q_{2}$, then
$\overrightarrow{\mathrm{F}_{12}}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q_{1} q_{2}}{r_{12}^{2}} \cdot \hat{r}_{12}$
And $\overrightarrow{\mathrm{F}_{13}}$ is force acting on $q_{1}$ by $q_{3}$, then $\overrightarrow{\mathrm{F}_{13}}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q_{1} q_{2}}{r_{13}^{2}} \cdot \hat{r}_{13} \quad \ldots(2)$ Where $\overrightarrow{r_{12}}$ is vector in direction along $q_{2}$ to $q_{1}$.
and $\overrightarrow{r_{13}}$ is vector in direction along $q_{3}$ to $q_{1}$.
$\therefore \overrightarrow{r_{13}}=\overrightarrow{r_{3}}-\overrightarrow{r_{1}}$
If $\overrightarrow{\mathrm{F}}$ is force on $q_{1}$ by $q_{2}$ and $q_{3}$, then $\vec{F}=\overrightarrow{F_{12}}+\overrightarrow{F_{13}}$
$=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q_{1} q_{2}}{r_{12}^{2}} \cdot \hat{r}_{12}+\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q_{1} q_{3}}{r_{13}^{2}} \cdot \hat{r}_{13}$
Two identical positive charges $Q$ each are fixed at a distance of ' $2 a$ ' apart from each other. Another point charge qo with mass ' $m$ ' is placed at midpoint between two fixed charges. For a small displacement along the line joining the fixed charges, the charge $q_{0}$ executes $SHM$. The time period of oscillation of charge $q_{0}$ will be.
$(a)$ Two insulated charged copper spheres $A$ and $B$ have their centres separated by a distance of $50 \;cm$. What is the mutual force of electrostatic repulsion if the charge on each is $6.5 \times 10^{-7}\; C?$ The radii of $A$ and $B$ are negligible compared to the distance of separation.
$(b)$ What is the force of repulsion if each sphere is charged double the above amount, and the distance between them is halved?
A simple pendulum of period $T$ has a metal bob which is negatively charged. If it is allowed to oscillate above a positively charged metal plate, its period will
The diagrams depict four different charge distributions. All the charged particles are at same distance from origin $(i.e. OA = OB = OC = OD)$ $F_1$ , $F_2$ , $F_3$ and $F_4$ are the magnitude of electrostatic force experienced by a point charge $q_0$ kept at origin in figure $-1$ , figure $-2$ , figure $-3$ and figure $-4$ respectively. Choose the correct statement.
Assertion : Consider two identical charges placed distance $2d$ apart, along $x-$ axis. The equilibrium of a positive test charge placed at the point $O$ midway between them is stable for displacements along the $x-$ axis.
Reason: Force on test charge is zero