The angles which the vector $A =3 \hat{ i }+6 \hat{ j }+2 \hat{ k }$ makes with the coordinate axes are

  • A
    $\cos ^{-1} \frac{3}{7}, \cos ^{-1} \frac{6}{7}$ and $\cos ^{-1} \frac{2}{7}$
  • B
    $\cos ^{-1} \frac{4}{7}, \cos ^{-1} \frac{5}{7}$ and $\cos ^{-1} \frac{3}{7}$
  • C
    $\cos ^{-1} \frac{3}{7}, \cos ^{-1} \frac{4}{7}$ and $\cos ^{-1} \frac{1}{7}$
  • D
    None of the above

Similar Questions

Vector$\overrightarrow A $ makes equal angles with $x, y$ and $z$ axis. Value of its components (in terms of magnitude of $\overrightarrow A $) will be

The direction cosines of vector $( A - B )$, if $A =2 \hat{ i }+3 \hat{ j }+\hat{ k }, B =2 \hat{ i }+2 \hat{ j }+3 \hat{ k }$ are

Following forces start acting on a particle at rest at the origin of the co-ordinate system simultaneously${\overrightarrow F _1} = - 4\hat i - 5\hat j + 5\hat k$, ${\overrightarrow F _2} = 5\hat i + 8\hat j + 6\hat k$, ${\overrightarrow F _3} = - 3\hat i + 4\hat j - 7\hat k$ and ${\overrightarrow F _4} = 2\hat i - 3\hat j - 2\hat k$ then the particle will move

Two vectors of magnitude $3$ & $4$ have resultant which make angle $\alpha$ & $\beta$ respectively with them $\{given\, \alpha + \beta \neq 90^o\}$

Which of the following statement$(s)$ is are correct?