Explain effect of multiplication or division of error on final result.
Suppose two physical quantities $\mathrm{A}$ and $\mathrm{B}$ have measured values $\mathrm{A} \pm \Delta \mathrm{A}, \mathrm{B} \pm \Delta \mathrm{B}$ respectively. Where $\triangle \mathrm{A}$ and $\triangle \mathrm{B}$ are their absolute errors.
For a product: Suppose the product of $\mathrm{A}$ and $\mathrm{B}$ is $\mathrm{Z}$ and the absolute error in $\mathrm{Z}$ is $\Delta Z$.
$\therefore \mathrm{Z}=\mathrm{AB}$
$\therefore \mathrm{Z} \pm \Delta \mathrm{Z}=(\mathrm{A} \pm \Delta \mathrm{A})(\mathrm{B} \pm \Delta \mathrm{B})$
$\therefore \mathrm{Z} \pm \Delta \mathrm{Z}=\mathrm{AB} \pm \mathrm{A} \Delta \mathrm{B} \pm \mathrm{B} \Delta \mathrm{A} \pm(\Delta \mathrm{A} \Delta \mathrm{B})$
Dividing the left side by $Z$ and right side by $A B$,
$1 \pm \frac{\Delta Z}{Z}=1 \pm \frac{\Delta A}{A} \pm \frac{\Delta B}{B} \pm\left(\frac{\Delta A}{A}\right)\left(\frac{\Delta B}{B}\right)$
$\frac{\Delta \mathrm{A}}{\mathrm{A}}$ and $\frac{\Delta \mathrm{B}}{\mathrm{B}}$ are very small hence their product will be very small and can be neglected. Neglecting negative sign for maximum error,
$\frac{\Delta Z}{Z}=\frac{\Delta A}{A}+\frac{\Delta B}{B}$
For a Quotient : Suppose the quotient of $A$ and $B$ is $Z$ and the absolute error of $Z$ is $\Delta Z$.
$\therefore \mathrm{Z}=\frac{\mathrm{A}}{\mathrm{B}}$
$\therefore \mathrm{Z} \pm \Delta \mathrm{Z}=\frac{\mathrm{A} \pm \Delta \mathrm{A}}{\mathrm{B} \pm \Delta \mathrm{B}}$
$Z\left(1 \pm \frac{\Delta Z}{Z}\right)=\frac{A\left(1 \pm \frac{\Delta A}{A}\right)}{B\left(1 \pm \frac{\Delta B}{B}\right)}$
Now, dividing the left side by $Z$ and right side by $\frac{A}{B}$,
$1 \pm \frac{\Delta Z}{Z}=\frac{1 \pm \frac{\Delta A}{A}}{1 \pm \frac{\Delta B}{B}}$
$\therefore 1 \pm \frac{\Delta Z}{Z}=\left(1 \pm \frac{\Delta A}{A}\right)\left(1 \pm \frac{\Delta B}{B}\right)^{-1}$
The dimensional formula for a physical quantity $x$ is $\left[ M ^{-1} L ^{3} T ^{-2}\right]$. The errors in measuring the quantities $M , L$ and $T$ respectively are $2 \%, 3 \%$ and $4 \%$. The maximum percentage of error that occurs in measuring the quantity $x$ is
The temperature of a metal coin is increased by $100^{\circ} C$ and its diameter increases by $0.15 \%$. Its area increases by nearly
If error in measuring diameter of a circle is $4\%$, the error in circumference of the circle would be
The resistance $\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}$ where $\mathrm{V}=(200 \pm 5) \mathrm{V}$ and $I=(20 \pm 0.2) A$, the percentage error in the measurement of $R$ is :
In an experiment of simple pendulum time period measured was $50\,sec$ for $25$ vibrations when the length of the simple pendulum was taken $100\,cm$ . If the least count of stop watch is $0.1\,sec$ . and that of meter scale is $0.1\,cm$ then maximum possible error in value of $g$ is .......... $\%$