Expand each of the following, using suitable identities : $(-2 x+3 y+2 z)^{2}$
$(-2 x+3 y+2 z)^{2}$
Using $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x,$ we have
$(-2 x+3 y+2 z)^{2} =(-2 x)^{2}+(3 y)^{2}+(2 z)^{2}+2(-2 x)(3 y)+2(3 y)(2 z)+2(2 z)(-2 x)$
$=4 x^{2}+9 y^{2}+4 z^{2}-12 x y+12 y z-8 z x $
Verify whether $2$ and $0$ are zeroes of the polynomial $x^{2}-2 x$.
Factorise : $2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z$
Find the remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by $x$.
Expand each of the following, using suitable identities : $(-2 x+5 y-3 z)^{2}$
Check whether $7+3 x$ is a factor of $3 x^{3}+7 x$.