Let $f (x)$ and $g (x)$ are two function which are defined and differentiable for all $x \ge x_0$. If $f (x_0) = g (x_0)$ and $f ' (x) > g ' (x)$ for all $x > x_0$ then

  • A

    $f (x) < g (x)$ for some $x > x_0$

  • B

    $f (x) = g (x)$ for some $x > x_0$

  • C

    $f (x) > g (x)$ only for some $x > x_0$

  • D

    $f (x) > g (x)$ for all $x > x_0$

Similar Questions

 $(i)$  $f (x)$ is continuous and defined for all real numbers

$(ii)$ $f '(-5) = 0 \,; \,f '(2)$ is not defined and $f '(4)  = 0$

$(iii)$ $(-5, 12)$ is a point which lies on the graph of $f (x)$

$(iv)$ $f ''(2)$ is undefined, but $f ''(x)$ is negative everywhere else.

$(v)$ the signs of  $f '(x)$ is given below

Possible graph of $y = f (x)$ is

Let $f: R \rightarrow R$ be a differentiable function such that $f(a)=0=f(b)$ and $f^{\prime}(a) f^{\prime}(b) > 0$ for some $a < b$. Then, the minimum number of roots of $f^{\prime}(x)=0$ in the interval $(a, b)$ is

  • [KVPY 2010]

Consider  $f (x) = | 1 - x | \,;\,1 \le x \le 2 $   and $g (x) = f (x) + b sin\,\frac{\pi }{2}\,x$, $1 \le x \le 2$  then which of the following is correct ?

Let $f (1) = - 2$ and $f ' (x) \ge 4.2$ for $1 \le x \le 6$. The smallest possible value of $f (6)$, is

Rolle's theorem is not applicable to the function $f(x) = |x|$ defined on $ [-1, 1] $ because