Let $f (x)$ and $g (x)$ are two function which are defined and differentiable for all $x \ge x_0$. If $f (x_0) = g (x_0)$ and $f ' (x) > g ' (x)$ for all $x > x_0$ then
$f (x) < g (x)$ for some $x > x_0$
$f (x) = g (x)$ for some $x > x_0$
$f (x) > g (x)$ only for some $x > x_0$
$f (x) > g (x)$ for all $x > x_0$
$(i)$ $f (x)$ is continuous and defined for all real numbers
$(ii)$ $f '(-5) = 0 \,; \,f '(2)$ is not defined and $f '(4) = 0$
$(iii)$ $(-5, 12)$ is a point which lies on the graph of $f (x)$
$(iv)$ $f ''(2)$ is undefined, but $f ''(x)$ is negative everywhere else.
$(v)$ the signs of $f '(x)$ is given below
Possible graph of $y = f (x)$ is
Let $f: R \rightarrow R$ be a differentiable function such that $f(a)=0=f(b)$ and $f^{\prime}(a) f^{\prime}(b) > 0$ for some $a < b$. Then, the minimum number of roots of $f^{\prime}(x)=0$ in the interval $(a, b)$ is
Consider $f (x) = | 1 - x | \,;\,1 \le x \le 2 $ and $g (x) = f (x) + b sin\,\frac{\pi }{2}\,x$, $1 \le x \le 2$ then which of the following is correct ?
Let $f (1) = - 2$ and $f ' (x) \ge 4.2$ for $1 \le x \le 6$. The smallest possible value of $f (6)$, is
Rolle's theorem is not applicable to the function $f(x) = |x|$ defined on $ [-1, 1] $ because