Examine the applicability of Mean Value Theorem:
$(i)$ $f(x)=[x]$ for $x \in[5,9]$
$(ii)$ $f(x)=[x]$ for $x \in[-2,2]$
$(iii)$ $f(x)=x^{2}-1$ for $x \in[1,2]$
lf Rolle's theorem holds for the function $f(x) =2x^3 + bx^2 + cx, x \in [-1, 1],$ at the point $x = \frac {1}{2},$ then $2b+ c$ equals
Given $f (x) =4\,\, - \,\,{\left( {\frac{1}{2}\, - \,x} \right)^{2/3}}\,$ $g (x) = \left\{ \begin{array}{l}\frac{{\tan \,\,[x]}}{x}\,\,\,\,,\,\,x \ne \,0\\1\,\,\,\,\,\,\,\,\,\,\,\,\,,\,\,\,x\, = \,0\end{array} \right.$
$h (x) = \{x\}$ $k (x) = {5^{{{\log }_2}(x\, + \,3)}}$then in $[0, 1]$ Lagranges Mean Value Theorem is $NOT$ applicable to
Let $f(x) = 8x^3 - 6x^2 - 2x + 1,$ then
If $f(x)$ = $sin^2x + xsin2x.logx$, then $f(x)$ = $0$ has
Suppose that $f (0) = - 3$ and $f ' (x) \le 5$ for all values of $x$. Then the largest value which $f (2)$ can attain is